\qquad
\qquad

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester

Branch : Applied Electronics and Instrumentation/Electronics and Communication/
Electronics and Instrumentation/Instrumentation and Control Engineering
AI 010 303/EC 010 303/EI 010 303/IC 010 303-NETWORK THEORY [AI, EC, EI, IC]
(New Scheme-2010 Admission onwards)
[Regular/Improvement/Supplementary]
Time : Three Hours

Assume any missing data suitably.
 Part A
 Answer all questions briefly.
 Each question carries 3 marks.

1. State Superposition theorem as applied to d.c. circuits.
2. Obtain impulse response of a series RL circuit.
3. Write the steps in nodal analysis of solving an electrical network.
4. Find the Laplace Transform of $e^{a t}$.
5. Define the transmission parameters of a two-port network.

$$
(5 \times 3=15 \text { marks })
$$

Part B

Answer all questions.
Each question carries 5 marks.
6. Use source transformation to calculate the current I in the network ? Fig. 1

Fig. 1
7. Initially relaxed inductances of $2,4,5$ Henries are connected in parallel across a 12 A source at $t=0$. Find the currents in them at $t=0^{+}$.
8. Two coils having 800 turns and 1400 turns respectively are placed close to each other such that, 60% of the flux produced by one coil links the other. If a current of 10 A flouring in the first coil produces a flux of 0.5 mWb , find the inductance of the second coil.
9. Find the inverse Laplace Transforms of :

$$
\frac{s^{2}+3}{\left(s^{2}+2 s+5\right)(s+2)}
$$

10. Explain the condition for symmetry for two-port network. Show the symmetry for z-parameters.

$$
(5 \times 5=25 \text { marks })
$$

Part C

Answer all questions.
Each full question carries 12 marks.
11. Find " i " in the circuit shown in Fig. 2 using Superposition theorem :

Fig. 2
Or
12. What is the value of R such that maximum power transfer takes place from the sources to R in the circuit shown in Fig. 3 ? Determine the amount of the maximum power :

Fig. 3
13. At time $t=0$, the switch K is opened for the network shown in Fig. 4. Find $\mathrm{V}_{1}(t)$ and $\mathrm{V}_{2}(t)$ for $t \geq 0$.

14. A series RLC circuit with zero initial conditions is connected to 110 V d.c. source at $t=0$. If $\mathrm{L}=1 \mathrm{H}$, $\mathrm{C}=\frac{1}{16} \mathrm{~F}$ and R is (a) 4Ω; (b) 8Ω, find $i(t)$ in the circuit in both cases and plot it.

$$
(6+6=12 \text { marks })
$$

15. Find the Thevenin and Norton equivalent circuits for the network shown in Fig. 5.

Fig. 5
Or
16. Calculate the current I_{x} using (a) nodal analysis; and (b) mesh analysis and verify the result for the network in Fig. 6.

Fig. 6
17. A series RLC circuit, with $R=180 \Omega, L=0.5 H$ and $C=100 \mu \mathrm{~F}$, has a sinusoidal voltage source $v=500 \sin (500 t+\phi)$ volts. Find from basics, using Laplace Transform, an expression for the resulting current, if the switch is closed at a time corresponding to $\phi=45^{\circ}$. Find the value of current 0.05 second after switching on.

$$
\mathrm{Or}
$$

18. A series circuit has $R=0.5 \Omega$ and $L=0.2 H$ and $C=2 F$. It is connected to a constant voltage variable frequency supply :
(a) Find the driving point admittance and plot its poles and zeros.
(b) Using the pole-zero plot, find expressions for amplitude response and phase response.
(c) Find magnitude and phase of admittance function at $w=1$.
19. (a) Determine the hybrid parameters of the network shown in Fig. 7 below :

Fig. 7
(b) Two 2-port networks, N_{1} and N_{2} are interconnected such that their input ports are in series and the output ports are in parallel. If H_{1} and H_{2} are the hybrid parameter matrices of N_{1} and N_{2} respectively, show from basis that the hybrid parameter matrix of the interconnection is $\mathrm{H}=\mathrm{H}_{1}+\mathrm{H}_{2}$.

Or

20. A certain network has a specified transfer function. Obtain the expressions for $\alpha(w)$ and $\theta(w)$ given that $\mathrm{H}(s)=\frac{(s+20)}{5(s+4)}$. Then find the steady state output $y(t)$ when the input is $x(t)=\cos 2 t+\cos 10 t+\cos 50 t$.
